On the Fully Commutative Elements of Coxeter Groups
نویسنده
چکیده
Let W be a Coxeter group. We define an element w ~ W to be fully commutative if any reduced expression for w can be obtained from any other by means of braid relations that only involve commuting generators. We give several combinatorial characterizations of this property, classify the Coxeter groups with finitely many fully commutative elements, and classify the parabolic quotients whose members are all fully commutative. As applications of the latter, we classify all parabolic quotients with the property that (1) the Bruhat ordering is a lattice, (2) the Bruhat ordering is a distributive lattice, (3) the weak ordering is a distributive lattice, and (4) the weak ordering and Bruhat ordering coincide.
منابع مشابه
Characterization of cyclically fully commutative elements in finite and affine Coxeter groups
An element of a Coxeter group is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. An element of a Coxeter group is cyclically fully commutative if any of its cyclic shifts remains fully commutative. These elements were studied by Boothby et al. In particular the authors precisely identified the Coxeter groups ...
متن کاملThe Enumeration of Fully Commutative Elements of Coxeter Groups
A Coxeter group element w is fully commutative if any reduced expression for w can be obtained from any other via the interchange of commuting generators. For example, in the symmetric group of degree n, the number of fully commutative elements is the nth Catalan number. The Coxeter groups with finitely many fully commutative elements can be arranged into seven infinite families An , Bn , Dn , ...
متن کاملOn the cyclically fully commutative elements of Coxeter groups
Let W be an arbitrary Coxeter group. If two elements have expressions that are cyclic shifts of each other (as words), then they are conjugate (as group elements) in W . We say that w is cyclically fully commutative (CFC) if every cyclic shift of any reduced expression for w is fully commutative (i.e., avoids long braid relations). These generalize Coxeter elements in that their reduced express...
متن کاملFully Commutative Elements and Kazhdan–lusztig Cells in the Finite and Affine Coxeter Groups
The main goal of the paper is to show that the fully commutative elements in the affine Coxeter group e Cn form a union of two-sided cells. Then we completely answer the question of when the fully commutative elements of W form or do not form a union of two-sided cells in the case where W is either a finite or an affine Coxeter group. Let W be a Coxeter group with S the distinguished generator ...
متن کاملBraided Elements in Coxeter Groups , Ii
We continue the study of freely braided elements of simply laced Coxeter groups, which we introduced in a previous work. A known upper bound for the number of commutation classes of reduced expressions for an element of a simply laced Coxeter group is shown to be achieved only when the element is freely braided; this establishes the converse direction of a previous result. It is also shown that...
متن کامل